quinta-feira, 13 de maio de 2010

Histótia da Matemática: Arquimedes


ARQUIMEDES

Arquimedes nasceu em Siracusa, na Sicília em 287 a.C., e foi educado em Alexandria, no Egito. Consagrou-se à Matemática, mais especialmente à Geometria. Muito jovem ainda começou a distinguir-se por seus trabalhos científicos. De regresso à Siracusa consagrou-se ao estudo da Geometria e da Mecânica, conseguindo descobrir princípios e fazer aplicações que o imortalizaram.

Descobertas: Embora Arquimedes seja mais famoso pelo princípio da Hidrostática que traz seu nome, talvez sejam mais notáveis suas investigações sobre a quadratura do círculo, que vem a ser a descoberta da relação entre a circunferência e o seu diâmetro. Na Hidrostática, o "Princípio de Arquimedes" pode e deve ser considerado uma importante descoberta que determinou grande adiantamento no estudo das ciências físicas e produziu felizes resultados. Possui aplicações nas ciências naturais, na Farmácia e mesmo nas freqüentes atividades do cotidiano. Podemos enunciar esse Princípio em duas partes:

a) Todo corpo submerso em um líquido, desloca desse líquido uma quantidade determinada, cujo volume é exatamente igual ao volume do corpo submerso.

b) O corpo submerso no líquido "perde" de seu peso uma quantidade igual ao peso do volume de líquido igual ao volume submerso do corpo.

Arquimedes inventou a balança que tem seu nome e foi o primeiro a determinar as leis do equilíbrio na balança. As atividades de seu pai, o astrônomo Fídias, influíram, sem dúvida, na vocação e formação científica de Arquimedes que, desde jovem, esteve em Alexandria, onde travou amizade com vários mestres alexandrinos.

Heureca!

De volta a Siracusa, dedicou toda a sua vida à pesquisa científica. Uma das estórias mais conhecidas a respeito de Arquimedes é a da "Coroa de ouro de Hieron", contada da seguinte maneira:

"Entre o grande número de descobertas realizadas por Arquimedes, é necessário assinalar a seguinte: Quando Hieron reinava em Siracusa, propôs oferecer, em um certo templo, uma coroa de ouro aos deuses imortais. Combinou a confecção da obra com um artesão mediante uma boa soma de dinheiro e a entrega da quantidade de ouro em peso. O artesão entregou a coroa na data combinada com o Rei, que a achou executada com perfeição, parecendo que contivesse todo o ouro que lhe havia sido entregue. Sabendo, porém, que o artesão retirara parte do ouro, substituíndo-o por um peso equivalente em prata, o rei, indignado diante desse engodo e não tendo em mãos os meios para provar ao artesão sua fraude, encarregou a Arquimedes que se ocupasse da questão e que com sua inteligência encontrasse esses meios. Um dia em que Arquimedes, preocupado com esse assunto, entrou por acaso em uma casa de banhos, percebeu que à medida que entrava na banheira, a água transbordava da mesma. Esta observação lhe fez descobrir a razão que procurava e, sem mais esperar, pela alegria que este fato lhe produzia, saiu do banho ainda nu e correndo para sua casa, gritava: Heureka! Heureka!, isto é, "encontrei! encontrei!".

Sobre a base desta descoberta, tomou, então, duas massas de igual peso que o da coroa: uma de ouro e outra de prata. Mergulhou depois a massa de prata em um vaso, o que fez sair uma quantidade de água igual ao volume dessa massa; tirou, então, a massa e voltou a encher o vaso com uma quantidade de água igual à que se derramara e que se preocupara em medir, de maneira que pode conhecer a quantidade de água que correspondia à massa de prata que introduzira no vaso. Depois desta experiência, mergulhou igualmente a massa de ouro no vaso cheio de água e, depois de havê-lo retirado, mediu novamente a água transbordada, encontrando que a massa de ouro não deslocara tanta água como a de prata e que a diferença para menos era igual à diferença entre os volumes da massa de ouro e da massa de prata em igual peso. Finalmente, voltou a encher o vaso, mergulhando desta vez a coroa, que deslocou mais água do que deslocara a massa de ouro de igual peso, porém menos que a massa de prata. Calculando, então, de acordo com estas experiências, em quanto a quantidade de água que a coroa desalojara era maior que aquela que deslocara a massa de ouro, soube quanta era a prata que fora misturada ao ouro, mostrando, assim, claramente, a fraude do artesão".

A morte de Arquimedes

A morte de Arquimedes é narrada de diferentes maneiras. Segundo Plutarco, a morte de Arquimedes veio depois que o exército romano conquistou as partes mais importantes da cidade sitiada:

"Tomadas também estas, na mesma manhã marchou Marcelo para os Hexápilos, dando-lhe parabéns todos os chefes que estavam às suas ordens; mas dele mesmo se diz que ao ver e registrar do alto a grandeza e beleza de semelhante cidade, derramou muitas lágrimas, compadecendo-se do que iria acontecer... ...os soldados que haviam pedido se lhes concedesse o direito ao saque... e que fosse incendiada e destruída. Em nada disso consentiu Marcelo e, só por força e com repugnância, condescendeu em que se aproveitassem dos bens e dos escravos... mandando expressamente que não se desse morte, nem se fizesse violência, nem se escravizasse nenhum dos siracusanos... Mas, o que principalmente afligiu a Marcelo foi o que ocorreu com Arquimedes: encontrava-se este, casualmente, entregue ao exame de certa figura matemática e, fixo nela seu espírito e sua vista, não percebeu a invasão dos romanos, nem a conquista da cidade. Apresentou-se-lhe repentinamente um soldado, dando-lhe ordem de que o acompanhasse à casa de Marcelo; ele, porém, não quis ir antes de resolver o problema e chegar até a demonstração; com o que, irritado, o soldado desembainhou a espada e matou-o... Marcelo o sentiu muito e ordenou ao soldado assassino que se retirasse de sua presença como abominável, e mandando buscar os parentes do sábio, tratou-os com o maior apreço e distinção".

Na produção de Arquimedes revela-se exclusivamente o investigador. Seus escritos são verdadeiras memórias científicas, trabalhos originais, nos quais se dá por conhecido todo o produzido antes sobre o tema e apresentam-se elementos novos, próprios. As principais obras de arquimedes foram sobre:

1. A esfera e o cilindro - Um dos mais belos escritos de Arquimedes. Entre os seus resultados, a área lateral do cone e do cilindro. 2. Os conóides e os esferóides. - Refere-se aos sólidos que hoje designamos elipsóide de revolução, parabolóide de revolução e hiperbolóide de revolução. 3. As espirais. - É um estudo monográfico de uma curva plana, hoje chamada espiral de Arquimedes, que se obtém por uma simples combinação de movimentos de rotação e translação. Entre os resultados, encontra-se um processo para retificar a circunferência. 4. A medida do círculo. - Contém apenas 3 proposições e é um dos trabalhos que melhor revela a mente matemática de Aristóteles. Em uma ostentação técnica combinam-se admiravelmente a matemática exata e a aproximada, a aritmética e a geometria, para impulsionar e encaminhar em nova direção o clássico problema da quadratura do círculo. 5. Quadratura da Parábola. - Este escrito oferece o primeiro exemplo de quadratura, isto é, de determinação de um polígono equivalente, de uma figura plana mistilínea: o segmento da parábola. 6. O Arenário. - Arquimedes realiza um estudo, no qual intercala um sistema de numeração próprio, que lhe permite calcular e, sobretudo exprimir quantidades enormes, e uma série de considerações astronômicas de grande importância histórica, pois nelas se alude ao sistema heliocêntrico da antiguidade, devido a Aristarco de Samos. 7. O equilíbrio dos planos. - É o primeiro tratado científico de estática. A alavanca, os centros de gravidade de alguns polígonos, entre outros resultados. 8. Dos corpos flutuantes. (Livro I e II). - As bases científicas da hidrostática. 9. Do método relativo aos teoremas mecânicos. - Arquimedes aproxima-se extraordinariamente de nosso conceitos atuais de cálculo integral. 10. O Stomachion. - É um jogo geométrico, espécie de puzzle, formado por uma série de peças poligonais que completam um retângulo. 11. O problema dos bois. - Um problema referente a teoria dos números.

Acessado em: 13 de maio de 2010

Nenhum comentário:

Postar um comentário